

Can Post-Stratification Adjustments Correct Bias in Traditional RDD Estimates?

Kathleen Thiede Call

SHADAC

AAPOR, Florida May 14, 2009

Funded by a grant from the Robert Wood Johnson Foundation

Acknowledgments

- Analysis inspired by Steve Cohen, AHRQ
- Coauthors:
 - Michael Davern
 - Michel Boudreaux
 - Pamela Jo Johnson
 - Justine Nelson
 - Donna Spencer

The Problem

- Erosion of sample coverage in traditional landline RDD (TL-RDD) surveys due to rise in cell phone only households (CPOH)
- Conducting CPOH surveys is...
 - Expensive
 - · Many states cannot afford
 - Complex
 - Merging CPOH and TL-RDD data to produce a single estimate is not straightforward

3

Research question

- Can post-stratification adjustments reduce bias associated with not sampling CPOH in TL-RDD health surveys?
- Goal of post-stratification:
 - to adjust the publicly available NHIS person weights so when applied to non-CPOH observations they produce outcome estimates that approximate those obtained from the original weights and the total NHIS sample

Methods

- Data:
 - 2007 NHIS public use data (0-64 year olds only)
- Approach:
 - Remove CPOH from the data
 - Reweight non-CPOH data to NHIS control totals using an iterative process
 - · Conventional: region, race/ethnicity, age
 - Less conventional: age by education, home ownership status, adult only 18-30 year old households
 - Examine each iteration and select the most efficient adjusted weight

www.shadac.org

5

Overview of analysis

- Contrast the total NHIS, CPOH and non-CPOH estimates for range of health related outcomes:
 - Health insurance coverage, delayed care due to cost, usual source of care, and current smoking status
- After omitting CPOH from the sample, contrast various iterations of post-stratification adjustments (impact on variance and bias)
- Examine the extent to which the adjusted weights reduce bias that was introduced from excluding CPOH

Definition: non-CPOH include households with landlines, no service, and unknown service

- CPOH equal 15.1% of the non-elderly weighted Person File
- CPOH equal 16.1% of the non-elderly weighted Sample File

www.shadac.org

Table 1. Selected estimates with original public use weights by phone status

Compared to NHIS non-elderly total sample, the non-CPOH subsample (B-A) significantly underestimates all key health related outcomes

Non-CPOH and CPOH subsamples are significantly different on all health related estimates (B-C), with CPOH reporting higher rates on all outcomes

_		Total Sample	e (A)	CPOH Omitte	ed (B)	СРОН (С	B-A T	-Test	B-C	T-Test	
Person File	Sample Size	75,764		65,420	86.3%	10,344	13.7%				
	Pop Estimate	260,725,235		221,406,987	84.9%	39,318,248	15.1%				
		%	SE	%	SE	%	SE				
	Uninsured	16.5%	0.28%	14.9%	0.30%	25.4%	0.68%	-1.59% *	**	-10.53%	***
	Delayed Care b/c Cost	8.3%	0.18%	7.5%	0.18%	13.1%	0.49%	-0.85% *	**	-5.61%	***
Sample Files	Sample Size	28,227		23,145	82.0%	5,082	18.0%				
	Pop Estimate	260,753,918		218,832,090	83.9%	41,921,828	16.1%				
		%	SE	%	SE	%	SE				
	No Usual Source of Care	13.8%	0.33%	11.7%	0.34%	24.3%	0.83%	-2.02% *	**	-12.57%	***
	Current Smoking	21.7%	0.46%	20.1%	0.47%	29.2%	1.12%	-1.55% *	**	-9.04%	***

, |

Table 2. Contrast adjustments for selected health outcomes

- Iterative post-stratification adjustments were made to the public use final person weight, sample adult and child weights
- Selection of the weight that performed best was based on Mean Squared Error (MSE) and variance estimates for 4 outcomes:
 - Person file:
 - 1. Uninsurance
 - 2. Delayed care due to cost
 - Sample adult/child file:
 - No usual source of care
 - 4. Current smoking status
- Weight that adjusts cumulatively for region, age, race/ethnicity, age by education and home ownership (wtenure) had the lowest average MSE
 - slightly overestimates the number of whites

www.shadac.org

Table 2. Contrast adjustments for selected health outcomes – summary continued

- For the non-CPOH subsample, compared to original unadjusted public use weight
 - variance of adjusted weights increases somewhat
 - bias (MSE) is greatly reduced with the adjusted weight (by a minimum of 48%)

		Non-CPOH	
		(Original	Adjusted
		unadjusted)	(wtenure)
	Uninsured		
	Design Effect (DEFF)	3.874	4.070
_	% Change in variance		6.91%
₽	MSE X 100	0.026	0.002
Person File	% Change in MSE		-90.6%
S.	Delayed Care b/c Cost		
ē	Design Effect (DEFF)	2.734	2.824
_	% Change in variance		2.54%
	MSE X 100	0.007	0.004
	% Change in MSE		-47.97%
	No Usual Source of Care		
	Design Effect (DEFF)	2.695	2.902
_	% Change in variance		10.95%
<u>=</u>	MSE X 100	0.042	0.009
Sample File	% Change in MSE		-77.73%
ם	Current Smoking		
ğ	Design Effect (DEFF)	2.400	2.450
0,	% Change in variance		-6.69%
	MSE X 100	0.026	0.012
	% Change in MSE		-55.7%

Table 3. Contrasting non-elderly NHIS sample with unadjusted and adjusted non-CPOH

Contrasting total sample (A) and adjusted Non-CPOH (C)...

- The magnitude of the bias for key outcomes is modest
 - 1.0 or less in terms of the absolute difference,
 - Less than 8% in terms of percent or relative difference
- The direction of the bias is toward underestimating key outcomes

Contrasting unadjusted (B) and adjusted Non-CPOH (C)...

· Weighting reduces the bias for key outcomes

	Public Use Weight				Tenure Adjustment (CPOH Omitted)						
	Total Sa	mnle	СРОН О	mitted	Adiusted	Weight	Bias Reduction	Adjusted- Total	Percent Difference		
	(A)		(B)		(C)		(1-((A-C)/(A-B)))	(C-A)	(C-A/A)	T-Test	
	%	SE	%	SE	%	SE					
Uninsured	16.5%	0.28%	14.9%	0.30%	16.1%	0.31%	75.7%	-0.4%	-2.3%	*	
Delayed care b/c Cost	8.3%	0.18%	7.5%	0.18%	7.7%	0.19%	29.7%	-0.6%	-7.1%	***	
No USOSC	13.8%	0.33%	11.7%	0.34%	12.9%	0.37%	55.8%	-0.9%	-6.5%	***	
Current Smoking	21.7%	0.46%	20.1%	0.47%	20.7%	0.48%	37.8%	-1.0%	-4.5%	***	

Table 3. Contrasting full NHIS and adjusted non-CPOH subsample – summary continued

- The adjusted estimates perform well
 - The magnitude of the bias is modest and the estimates are only moderately different from the total non-elderly sample (gold standard)
 - The direction of the bias is toward underestimating key health related outcomes
- Compared to unadjusted non-CPOH, adjusted non-CPOH estimates reduce the bias by as much as 76% for key outcomes

11

Conclusions and implications

- Can post-stratification adjustments correct for bias associated with not sampling CPOH in TL-RDD health surveys?
 - Yes although variance increases somewhat, bias is greatly reduced for the re-weighted data
 - For key outcome central to policy reform simulations and funding formulas —uninsurance—bias is small yet significantly different from the gold standard
- It may be more cost-effective to rely on adjusted TL-RDD data given the high cost of interviewing CPOH and uncertainty of weighting procedures that merge CPOH and TL-RDD data
- Weighting strategy presented is but one possibility; still tinkering
- Must continue to monitor efficacy of this approach to dealing with coverage bias with changing telephony

Contact information

- Kathleen Thiede Call
- State Health Access Data Assistance Center (SHADAC)
 - callx001@umn.edu

