shadac \

STATE HEALTH ACCESS DATA ASSISTANCE CENTER

Using SHADAC Health Insurance Unit (HIU) and
Federal Poverty Guideline (FPG) Microdata Variables

November 2013

Introduction

SHADAC researchers have developed Health Insurance Unit (HIU) and Federal Poverty Guideline (FPG)
variables for analyzing health insurance coverage in federal population surveys. These variables are available
through the Minnesota Population Center’s Integrated Public Use Microdata Series (IPUMS) for the
American Community Survey (ACS) and the Current Population Survey Annual Social and Economic

Supplement (CPS).!

The HIU defines family based on who is likely considered a “family unit” in determining eligibility for either
private or public coverage.” This is a narrower definition compared with the Census Bureau’s general family
definition that groups all related members of a household into a family.

The FPG are issued by the Department of Health and Human Services for administrative purposes, such as
determining financial eligibility for federal programs. The FPG are different from the Census Bureau’s federal
poverty thresholds (FPT) that are used for statistical purposes, such as determining the official number in

poverty.’

This technical document provides information and example STATA and SAS code for using the SHADAC
HIU and FPG microdata variables that are available through IPUMS for the ACS and CPS. This code will

also allow analysts to replicate estimates available from SHADAC’s Data Center.*

Variables

Table 1 lists the HIU and FPG variables available from IPUMS, as well as additional variables that are needed
to match the universes used in SHADAC’s Data Center tables. All of the component variables are provided
so data users have the flexibility to define family, poverty levels, and universe based on their analysis. In this
brief we provide code for calculating estimates by HIU and FPG. To match the SHADAC Data Center,
estimates are restricted to the poverty universe as defined by the Census Bureau and for the ACS to the non-
institutionalized population.

' IPUMS ACS is available at https://usa.ipums.org/usa/ and IPUMS CPS is available at https://cps.ipums.org/cps/.
* A complete description of the HIU is available in SHADAC Brief #27 “Defining ‘Family’ for Studies of Health
Insurance Coverage” along with the SAS and STATA code to create the HIU at
http://www.shadac.org/publications/defining-family-studies-health-insurance-coverage.

? A description of FPG and FPT is available in SHADAC Blog “FPG vs. FPL: What's the Difference” at
hetp://shadac.org/blog/fpg-vs-fpl-whats-difference. FPT are often referred to as federal poverty levels (FPL).

* SHADAC’s Data Center is an easy to use on-line table generator providing health insurance coverage estimates by
many characteristics from the ACS, CPS, and SHADAC-Enhanced CPS (a harmonized version of the CPS) available at
http://shadac.org/datacenter.



https://usa.ipums.org/usa/
https://cps.ipums.org/cps/
http://www.shadac.org/publications/defining-family-studies-health-insurance-coverage
http://shadac.org/blog/fpg-vs-fpl-whats-difference
http://shadac.org/datacenter

shadac \

STATE HEALTH ACCESS DATA ASSISTANCE CENTER

Table 1. ACS and CPS IPUMS variables for SHADAC HIU, FPG, and Data Center universe

Variable Name Description
To calculate estimates by HIU
HIUID Identification of HIU
HIUNPERS Number of persons in HIU
HIURULE Pointer rule for HIU creation (not needed for analysis)
To calculate estimates by FPG
HIUFPGBASE Federal poverty guidelines base
HIUFPGINC Federal poverty guidelines increment
INCTOT Total personal income
ADJUST Income adjustment factor (ACS only)
To match SHADAC Data Center
AGE Age
GQTYPE Group quarters type (ACS only)
POVERTY Poverty status (only needed for ACS to calculate poverty universe)
FTYPE Family type (CPS only)
General Steps

This section provides the general steps to tabulate estimates by HIU and FPG. Detailed STATA and SAS
code follows. The steps are the same for the ACS and CPS except where noted.

1. Determine poverty guidelines based on FPG and HIU family size.
HIU_HHSPOV_GUIDE = HIUFPGBASE + HIUFPGINC*(HIUNPERS-1)

2. Sum personal income by HIU family. For the ACS, multiply INCTOT by the income adjustment factor
ADJUST. Note that the Census Bureau uses ADJUST and IPUMS also uses this to calculate the variable
POVERTY, but in general IPUMS does not recommend the use of this factor.?

ACS: HIU_TOTVAL = sum(INCTOT*ADJUST) by HIUID

CPS: HIU_TOTVAL= sum(INCTOT) by HIUID

3. Calculate the poverty cutoff based on HIU family income and FPG poverty guidelines.
HIU_HHSPOV = 100*(HIU_TOTVAL/HIU_HHSPOV_GUIDE)

4. Calculate the HIU poverty universe. This is based on the Census Bureau definition of poverty universe and
is needed to match SHADAC Data Center tabulations by income and poverty.
ACS: HIU_POVUNIYV excludes unrelated children under 15, institutional group quarters, and some
non-institutional group quarters (college dormitories and military barracks)
CPS: HIU_POVUNIV excludes unrelated children under 15; the CPS surveys the civilian non-

institutionalized population, so institutional group quarters are not included

> For more information on the [PUMS variable POVERTY and the income adjustment faccor ADJUST see
https://usa.ipums.org/usa-action/variables/ POVERT Y#description_section and

https://usa.ipums.org/usa/acsincadj.shtml.



https://usa.ipums.org/usa-action/variables/POVERTY#description_section
https://usa.ipums.org/usa/acsincadj.shtml

shadac \

STATE HEALTH ACCESS DATA ASSISTANCE CENTER

5. For the ACS only, calculate the non-institutionalized universe. This universe is needed to match all
SHADAC Data Center tabulations for the ACS.
NONINST excludes institutionalized group quarters

STATA Code
/* 1. Create HIU_HHSPOV_GUIDE */
gen hiu_hhspov_guide = hiufpgbase + hiufpginc*(hiunpers-1)

/* 2. Sum personal income by HIU */
/* For ACS use adjusted income and remove N/A */
replace inctot=. if inctot==9999999
gen adj_inc = inctot*adjust

/* For CPS use income and remove not in universe and missing */

replace inctot=. if inctot==99999999|inctot==99999998

gen adj_inc = inctot
egen hiu_totval = sum(adj_inc), by(hiuid)

/* 3. Create HIU_HHSPOV */
gen hiu_hhspov = 100*(hiu_totval/hiu_hhspov_guide)

/* 4. Create HIU_POVUNIV */
/* For ACS */
gen hiu_povuniv = 1
replace hiu_povuniv = 0 if gqtype==0 & age<15 & hiunpers==1
replace hiu_povuniv = 0 if gqtype>=1 & gqtype<=4
replace hiu_povuniv = 0 if gqtype>=5 & gqtype<=9 & poverty==0

/* For CPS */
gen hiu_povuniv = 1
replace hiu_povuniv = 0 if age<15 & hiunpers==1 & ftype==5

/* 5. Identify non-institutionalized population for the ACS */
gen noninst = .
replace noninst = 0 if gqtype>=1 & gqtype<=4
replace noninst = 1 if gqtype==0 | (gqtype>=5 & gqtype<=9)

SAS Code
data ipums ;
set ipums ;

/* 1. Create HIU_HHSPOV_GUIDE */



shadac \

STATE HEALTH ACCESS DATA ASSISTANCE CENTER

hiu_hhspov_guide = hiufpgbase + hiufpginc*(hiunpers-1) ;

/* For ACS use adjusted income */

adj_inc = inctot*adjust ;

/* For CPS use income */
adj_inc = inctot ;
run;

proc sort data=ipums out=ipums_sorted ;
by hiuid;

run;

/* 2. Sum personal income by HIU */

/* For ACS, remove N/A income */

proc means data=ipums_sorted (where=(inctot ne 9999999)) noprint sum ;
var adj_inc ;
by hiuid ;
output out=hiu_sum sum=;

run;

/* For CPS, remove not in universe and missing income */

proc means data=ipums_sorted (where=(inctot ne 99999999 and inctot ne 99999998)) noprint sum ;
var adj_inc;
by hiuid ;
output out=hiu_sum sum=;

run;

data ipums?2 ;
merge ipums_sorted
hiu_sum (rename=(adj_inc=hiu_totval));

by hiuid ;

/* 3. Create HIU_HHSPOV */
hiu_hhspov = 100*(hiu_totval/hiu_hhspov_guide) ;

/* 4. Create HIU_POVUNIV */
/* For ACS */
if (gqtype = 0 and age < 15 and hiunpers = 1) OR
gqtype in(1,2,3,4) OR
(gqtype in(5,6,7,8,9) and poverty=0) then hiu_povuniv=0 ;

else hiu_povuniv =1

/* For CPS */



shadac \

STATE HEALTH ACCESS DATA ASSISTANCE CENTER

if (age < 15 and hiunpers = 1 and ftype=5) then hiu_povuniv=0 ;
else hiu_povuniv=1 ;

/* 5. Identify non-institutionalized population for the ACS */
if gqtype in (0, 5, 6, 7, 8, 9) then noninst=1 ;
else noninst=0 ;
run;



